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Abstract

This paper presents a methodology for finding numerically, by means of curve-following,

all real solutions of a general system of n nonlinear equations in n unknowns, within

a given n-dimensional box. The main idea behind our method is a) to locate all parts

of the curves formed by a selected subset of n − 1 equations of the initial system, b)

follow these parts numerically within the given n-box and c) during this process, find

all their intersection points with the hypersurface that represents the left-out equation

of the initial system. With proper handling techniques, both stages (a) and (b) can be

done with safety even when using a rapidly - but locally - convergent method such as

Newton’s method. Stage (c) on the other hand is theoretically straightforward and can

be implemented by examining sign change and using bisection. However, improvement

of performance with automatic step-size adaptation is also feasible.

Since the choice of the left-out equation as well as the order of the unknowns, in

some problems may affect the algorithm’s performance, a secondary procedure for prob-

lem optimization has also been developed. This integrated algorithm has been success-

fully tested in all classical test-problems that are used in the literature (in total about

130 problems with dimension up to n = 10) and achieved to locate approximations to

all the known real solutions of each test-problem, with a user-provided accuracy. It has

also proved to be more than 10 times quicker than Kuiken’s (1968) 2D curve-following

method, when compared in two-dimensional problems.
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1 Introduction

Although there exists in literature a vast variety of numerical methods for finding one solu-

tion of a system of nonlinear equations, the problem of locating all real solutions in a given

n-box has been addressed by a few authors in the past. Kearfott (1987) provided a thor-

ough analysis of the methodologies that could be used for such a problem and compared

various interval, bisection and continuation methods, while at the same time investigating

and presenting the restrictions and constraints of each. However he did not consider the

idea of locating all the real solutions by n-dimensional curve following. This problem has

only been studied in two dimensions by Kuiken (1968), who presented a method of solution

finding by curve following that is based on numerical integration.

The basic notion behind Kuiken’s method is that, the solutions of the system

f (x , y) = 0, g(x , y) = 0

are merely the singular points of the system of ODEs

d x
d t
= f (x , y),

d y
d t
= g(x , y).

However, Kuiken’s method of curve-following is computationally expensive (as can be seen

by comparison with our method in Sect. 6) and cannot be easily extended in more dimen-

sions due to the rotations of the coordinate system that must take place at each step of the

curve-following.

Despite the restrictions of Kuiken’s method, the idea of extending the curve-following in

many dimensions with the purpose of finding all the real solutions of a system of n equations

with n unknowns can be in principle applicable.

Let us assume that we need to calculate all real solutions of the n-dimensional system

of nonlinear equations

fi(x1, x2, ..., xn) = 0, i = 1, .., n (1)

in the n-box defined by the known bounds ai, bi such that xi ∈ [ai, bi], i = 1, .., n.

In fact, one can always detach one equation from the system (1) and try to follow (in the

n-dimensional space) the one-parametric curve formed by the remaining n−1 equations of

(1) (provided the constant rank theorem holds) until one meets the hypersurface formed

by the detached equation.

In this context, the main problems to be solved are a) how to locate all parts of the curves

formed by the selected subset of n−1 equations and b) how to inexpensively follow each of

these parts within the given n-box. Apart from the above obvious issues, another question
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that arises from this specific approach is, how to select which equation to leave out from

the original system and consequently, how the choice of the subset of equations to follow,

affects the overall algorithmic performance.

In the sections that follow, we address all the above problems, together with that of the

implementation of the final stage c) of efficiently locating, during the curve following, the

intersection points of the followed curve with the hypersurface of the left-out equation. In

specific, in Sect. 2 we explain stage (a) and in Sect. 3 we explain stage (b) together with

stage (c) of our method, since these two stages are executed in combination. In Sect. 4,

the procedure is illustrated through two examples. In Sect. 5, a thorough discussion is

made on the dependence of our method’s performance on the ordering of the system’s rows

and variables, and an auxiliary procedure to improve this performance through changing

of ordering is presented. Finally, in Sect. 6, applications of this integrated method to the

most representative of the known test-problems are presented and a comparison of our

algorithm’s 2-dimensional case with the method of Kuiken (1968) is elaborated. Suggestions

for further extensions and possible improvements of the method are discussed in Sect. 7.

2 Algorithm’s stage (a): Locating all parts of a curve in �n

The first question that arises in n-dimensional curve following, is obviously, how to locate

all the parts of the curve that need to be followed. An n- dimensional exhaustive grid search

is computationally prohibitive due to its large algorithmic complexity. A feasible approach

however, is to choose one variable (e.g. xn), consider it as "running" variable (that is, as the

curve’s parameter) and examine the intersections of the curve with "slices" at this dimension

(i.e. xn-slices). This procedure was also followed by Kuiken (1968) in his two-dimensional

approach. The algorithm we have created for this purpose is presented below:

Algorithm 2.1: LocateCurveParts

Step 1: Input {F, J, n, lower, upper, stepx, stepz, acc1, acc2, step, thresh}
Step 2: ListOfCurveParts={}
Step 3: Fl=F(1:n-1); Fu = F(n); Jl=J(1:n-1;1:n-1)

lowerl=lower(1:n-1); upperl =upper(1:n-1)
Step 4: npoints=floor((upperl-lowerl)/stepx+1); meshpoints=prod(npoints)

A=Rmesh(npoints, lowerl , stepx)
Step 5: z0=lower(n)
Step 6: Repeat Steps 7 - 19 while z0<=upper(n)

Step 7: Fl0 = Fl(xn = z0); Jl0 = Jl(xn = z0)
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Step 8: CurveStartingPoints=[]
Step 9: Repeat Steps 10 - 12 for i=1:meshpoints

Step 10: v0 = A(i, :)
Step 11: [v, found]=Newton(n-1,Fl0, Jl0, v0, acc1)
Step 12: If found: CurveStartingPoints=Append(CurveStartingPoints,v,acc1)
Step 13: Repeat Steps 14 - 18 for each v in CurveStartingPoints

Step 14: vz0 = [v z0]
Step 15: exists=Belongs(vz0, ListOfCurveParts)
Step 16: If not(exists): Do Steps 17 - 18

Step 17: [ListOfCurveParts, ListOfSolutions]=FollowCurve(Fl , Fu, Jl ,
n, lower, upper, step, vz0, acc1, acc2, thresh, ListOfCurveParts, ListOfSolutions)

Step 18: [ListOfCurveParts, ListOfSolutions]=FollowCurve(Fl , Fu, Jl ,
n, lower, upper, -step, vz0, acc1, acc2, thresh, ListOfCurveParts, ListOfSolutions)

Step 19: z0 = z0+stepz
Step 20: Output {ListOfSolutions}

Each step of the algorithm is thorougly explained below.

Step 1: F is the vector of functions in variables x1, .., xn of system (1), J is the Jacobian

matrix of F , lower is a vector of all the lower bounds ai, and upper is a vector of all the

upper bounds bi that define the n-box into which we are searching for the solutions of (1).

stepx is the step interval-length for the creation of subintervals of [ai, bi], i = 1, .., n−1 (see

Step 4 below). Before executing Algorithm 2.1 and without loss of generality, we assume

that our equations and variables are already ordered in such a way that, the last equation

of (1) will be left out of the system and the last variable (xn) will be "sliced". stepz is the

step interval-length for the creation of subintervals of [an, bn], and therefore it is the step-

size of this "slicing". The optimal way of variable and row ordering, and a routine to do

this automatically, before the call of Algorithm 2.1, will be extensively discussed in Sect. 5.

Finally, acc1 is the user-specified accuracy with which curve points will be found and acc2

is the accuracy of solution finding. step is the initial step used for curve-following and is

passed on to algorithm Fol lowCurve, together with the input parameters acc2 and thresh.

The latter will be discussed in the next section.

Step 2: For reasons of efficiency, the algorithm stores the parts of the curves followed so

far in a list, so that these curves are not visited again. Initially this list is empty.

Step 3: Split the vector of functions F into two parts: Fl , the functions of the first n−
1 equations of (1) and Fu, the last equation of (1). Correspondingly, denote with Jl the

submatrix of the Jacobian J that corresponds to Fl . Also denote with lowerl ,upperl the

vectors with the first n− 1 elements of the bounds’ vectors lower and upper respecively.

4



N-Dimensional curve following for solving numerically system of nonlinear equations	 259

Step 4: Create an (n−1)-dimensional mesh of starting points with step stepx within the

(n−1)-box defined by the vectors lowerl ,upperl . The number of these points is meshpoints.
These points are stored in a 2-dimensional matrix A, whose number of rows is meshpoints
and each row contains the n−1 coordinates of a starting point. The routine that creates the

starting points’ matrix A is especially created for this purpose and is called Rmesh.

Step 5: Take the first "slice" (called z0) of the last variable xn, whose value is the lower

bound an of [an, bn] = [lower(n), upper(n)].
Step 6: Repeat Steps 7 - 19 for each "slice" z0 of xn, until we reach its upper bound bn.

Step 7: Substitute z0 to xn into the system Fl = 0 and create the (n − 1)-dimensional

subsystem Fl0 = 0. Substitute z0 to xn also in the submatrix Jl and create Jl0.

Steps 8-12: For each starting point v0 (i.e. for each row) of matrix A, use this point as

a starting point for any locally convergent method such as Newton’s method, in order to

find a solution of the (n− 1)× (n− 1) subsystem Fl0 = 0 with accuracy acc1. If Newton’s

method converges to a solution v (and so the flag-variable f ound is returned as t rue),

then this (n−1)-dimensional solution, when appended with the coordinate xn = z0, will be

a point of the curve of the subsystem Fl = 0 of (1) for the current xn-slice z0. We add the

solution vector v to the matrix CurveStar t ingPoints, which is a 2-dimensional matrix that

is initially empty and at the end of the loop of Step 9 will contain at most as many points

as matrix A (the solutions of the subsystem Fl0 = 0 that correspond to the mesh starting

points in A). If Newton’s method diverges (and so the flag-variable f ound is returned as

f alse), no point is appended to the matrix CurveStar t ingPoints. The inclusion of the

solution v to the matrix CurveStar t ingPoints is done with the routine Append, which

also checks if the certain solution coincides (with accuracy acc1) with any already existing

in CurveStar t ingPoints solution, to which Newton’s method may have converged when

starting from a previously used starting point v0 of A. By the end of the loop of Step 9, the

number of rows of CurveStar t ingPoints must be the number of all the different curve-

parts of the subsystem Fl = 0 that exist at the "slice" xn = z0.

Steps 13-18: Use each curve-point found in steps 9-12 (after adding to it the last coordi-

nate xn = z0) as a starting point (named vz0) to follow this curve upwards and downwards

into the user-given n-box and store the curve-points found, updating the list ListO f Curve
Par ts. However, before starting the curve following, we need to check if vz0 already exists

in a curve part found in a previous iteration of the loop of Step 13. This task is accom-

plished by the routine Belongs, which returns the flag-variable ex ists. If ex ists is t rue,

then nothing needs to be done, since this curve part has already been followed. In this way

we avoid redundant curve-following. Finally, the algorithm Fol lowCurve starts from the

curve-point vz0 and follows the curve upwards (Step17) and then downwards (Step18),
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with step-size step, simultaneously appending the ListO f CurvePar ts and investigating the

existence of intersection points with the surface of the last equation Fu = 0. Fol lowCurve
will be presented in the next section.

Step 19: Increase the z0-slice by stepz and proceed to the next iteration of the loop of

Step 6. At each z0-slice, new curve parts may be added to the ListO f CurvePar ts. At the

end of this loop, the list ListO f CurvePar ts should contain all the parts of the curves of the

subsystem Fl = 0 that belong to the wanted n-box.

Step 20: The algorithm returns the ListO f Solutions, that is updated each time the

routine Fol lowCurve is executed. With proper selection of step-sizes, by the end of the

loop of Step 6, the ListO f Solutions should contain all the solutions of (1) in the given

n-box.

The routines Rmesh, Append and Belongs that are called by Algorithm 2.1, are auxiliary

routines especially constructed for use by our method and will not be presented here since

they contain elementary calculations, but can be provided by the author upon request. On

the contrary, the algorithm Fol lowCurve comprises an important part of the method and

therefore it will be explained in detail in the next section.

3 Algorithm’s stage (b): Following a curve in �n

In the present section we present the algorithm Fol lowCurve, which starts from a curve-

point of the list CurveStar t ingPoints that was created by Step 12 of Algorithm 2.1 and

follows this curve in �n for increasing or decreasing xn-values, depending on the sign of

the input parameter step. During the curve-following process, an investigation of possible

intersection points with the surface of the last equation Fu = 0 is carried out.

Algorithm 3.1: FollowCurve

Step 1: Input {Fl , Fu, Jl , n, lower, upper, step, vz0, acc1, acc2, thresh, ListOfCurveParts, ListOfSolutions}
Step 2: Repeat Steps 3 - 16 while lower(n)≤ vz0(n)≤ upper(n)

Step 3: ListOfCurveParts=Append(ListOfCurveParts,vz0, acc1)
Step 4: u0 = Fu(vz0)
Step 5: If |u0| ≤ acc2: Do Steps 6 - 8

Step 6: ListOfSolutions=Append(ListOfSolutions,vz0, acc1)
Step 7: [vz0, done]=ProceedOneStep(Fl , Fu, Jl , n, step, vz0, acc1,thresh)
Step 8: If not(done): Exit Loop of Step 2

Step 9: Else Do Steps 10 - 16
Step 10: [vz1, done]=ProceedOneStep(Fl , Fu, Jl , n, step, vz0, acc1,thresh)
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Step 11: If not(done): Exit Loop of Step 2
Step 12: u1 = Fu(vz1)
Step 13: If |u1|> acc2 and u0 · u1 < 0: Do Steps 14 - 15

Step 14: [solution found]=Bisection(Fl , Fu, Jl , n, vz0, vz1, acc2)
Step 15: If found Add solution to ListOfSolutions

Step 16: u0 = u1; vz0 = vz1

Step 17: Output {ListOfCurveParts, ListOfSolutions}

Each step of the algorithm is thorougly explained below.

Step 1: Fl , Fu, Jl , n, lower and upper are as explained in the previous section. step is

the initial xn-step used for curve following, with xn being the running variable. This step

might decrease in order to meet the proximity demands of two successive curve points - see

description of algorithm ProceedOneStep for more details. vz0 is the curve’s starting point.

acc1 is the wanted accuracy of curve-point approximation. It must be relatively high (e.g.

10−10) for the curve to be followed correctly. On the contrary, acc2 (the wanted accuracy of

the approximation of solutions used by Bisect ion routine) needs not be high (e.g. 10−4),

since our method aims to provide initial approximations only of all the solutions of (1) within

a given n-box. These approximations can subsequently be used as starting values by any

high-precision single-solution finding algorithm. thresh is a threshold step-size value that is

passed on to algorithm ProceedOneStep and will be discussed later in this section. Finally,

both ListO f CurvePar ts and ListO f Solutions are updated at each call of Fol lowCurve,

and that is why they are both Input and Output to the algorithm.

Step 2: All the steps that follow must be repeated as long as the running variable vz0(n) =
xn stays within [an, bn] = [lower(n), upper(n)].

Step 3: The starting curve point vz0 was calculated by Newton method (see steps 11 and

14 of Algorithm 2.1) and satisfies the equations Fl = 0 for a certain "slice" xn = z0. Since

it belongs to the curve, it must be added in the ListO f CurvePar ts. After each new loop

iteration, vz0 will hold the new curve point (see steps 7, 10 and 16 above) and therefore it

must be also added in the ListO f CurvePar ts.
Step 4: In order to investigate the existence of solutions of (1), we calculate the value

u0 of its last equation Fu = 0 at each new curve point vz0.

Steps 5-8: We take into account the rare case that in the current curve-following step

we have stepped directly on a solution (actually, with proximity acc2). In that case, the

approximate solution vz0 is added to the ListO f Solutions and we procceed to the next

step of curve following, calling the routine ProceedOneStep (see Algorithm 3.2 below)

and calculating a new vz0. In this way, if the step-size step is sufficiently small, we can

also locate clustered solutions. If the routine ProceedOneStep does not manage to proceed

7
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further, this means that the curve part we are following is not continued in the same xn

direction (either increasing or decreasing, depending on the sign of step) and algorithm

Fol lowCurve stops.

Steps 9-16: If we have not already found a solution, we have to compare the value u0 of Fu

at the last calculated vz0 with the value u1 at the point vz1 which is the new point calculated

by calling ProceedOneStep. Of course, as we have mentioned before, if ProceedOneStep
fails to calculate vz1, the algorithm stops. If we do have a u1 however, there is again the

chance that this is absolutely small enough to consider that we have approximately found

a solution (vz1). In that case, we rename the solution point to vz0 and the corresponding

Fu value to u0 (Step 16) and proceed the loop iterations, so that steps 5-8 are executed, in

order to handle this new solution and then to move on.

If u1 is not small enough for vz1 to be considered a solution, we check if it is eterosign

of u0 (Step 13). Then there may exist a solution of (1) with xn between vz0(n) and vz1(n).
This solution is found using a bisection-type algorithm (Step 14) that will be presented

later in this section. If the routine Bisect ion achieves to locate the solution, then the latter

is added to the ListO f Solutions (Step 15) and the algorithm proceeds after setting vz1 to

vz0 and u1 to u0 (Step 16).

On the other hand, if u1 is of the same sign as u0, we proceed directly to Step 16. A

discussion can be done at this point concerning the possibilities of increasing or decreas-

ing the step-size step of curve-following according to whether u1 increases or decreases

in absolute value, compared to u0 (that is, according to whether we are distancing from

or approaching to a solution). However, as also mentioned in Sect. 7, tests that we have

performed for this purpose, led us to the conclusion that this alteration of step affects the

adaptation of h which is done anyway for the needs of precise curve-following in algorithm

ProceedOneStep presented below. As a result, the overall performance of the algorithm is

not improved.

In what follows, we present the algorithn ProceedOneStep.

Algorithm 3.2: ProceedOneStep

Step 1: Input {Fl , Fu, Jl , n, step, vz0, acc1, thresh}
Step 2: v0=vz0(1:n-1); z0=vz0(n); h=step
Step 3: z0 = z0+h; Fl0 = Fl(xn = z0); Jl0 = Jl(xn = z0)
Step 4: [v, found]=Newton(n-1,Fl0, Jl0, v0, acc1); vz = [v z0]
Step 5: NotAcceptable=not(found) or (found and norm(v-v0)>step)
Step 6: Repeat Steps 7 - 10 while NotAcceptable and h≥ thresh

Step 7: h=h/2; z0 = z0+h; Fl0=Fl(xn = z0); Jl0 = Jl(xn = z0)
Step 8: [v, found]=Newton(n− 1, Fl0, Jl0, v0, acc1)

8
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Step 9: NotAcceptable=not(found) or (found and norm(v-v0)>step)
Step 10: done=not(NotAcceptable); vz=[v z0]

Step 11: Output {vz, done}

In brief, what Algorithm 3.3 does, is to advance curve-following from vz0 to vz. If Newton

method diverges when starting from v0 = vz0(1 : n − 1), or even if it returns a solution v
of the (n− 1)× (n− 1) subsystem of (1) that is far away from the initial point v0, then we

consider that curve-following is not done correctly and v is not acceptable (Step 5). In that

case, we enter a loop (steps 7-10) of repeating the procedure while halving the step-size h,

until either we find an acceptable solution v or h becomes so small that we are practically

not advancing the curve-following. The lower bound of h is controlled by the user-defined

threshold parameter thresh, that has been passed to ProceedOneStep through the calls

of LocateCurvePar ts and Fol lowCurve. After the end of this loop, the algorithm either

returns an acceptable next curve-point vz, or it outputs f alse through the flag variable

done.

As a last structural element of our method, we present the algorithn Bisect ion that

is called at Step 14 of algorithm Fol lowCurve. This algorithm applies the principle of

bisection in the n-th dimension of our problem and uses Newton method for calculating the

n− 1 coordinates of the point with middle xn.

Algorithm 3.3: Bisection

Step 1: Input {Fl , Fu, Jl , n, vz0, vz1, acc1, acc2}
Step 2: zm=(vz0(n)+vz1(n))/2; Fl0=Fl(xn=zm); Jl0=Jl(xn=zm); v0=vz0(1:n-1)
Step 3: [midpoint, found]=Newton(n-1,Fl0, Jl0, v0, acc1)
Step 4: If not(found): End
Step 5: vm=[midpoint zm]; gm=Fu(vm); ga=Fu(vz0); gb=Fu(vz1)
Step 6: Repeat Steps 7 - 19 while |gm|>acc2 and found

Step 7: If ga·gm< 0 and |gm|≤|gb|: Do Steps 8-11
Step 8: vz1=vm; zm=(vz0(n) + vz1(n))/2
Step 9: Fl0=Fl(xn = zm); Jl0 = Jl(xn = zm)
Step 10: [midpoint, found]=Newton(n-1,Fl0, Jl0, v0, acc1)
Step 11: If not(found): End.
Step 12: vm=[midpoint zm]; gb=gm; gm=Fu(vm)

Step 13: Else If gm·gb< 0 and |gm|≤|ga|: Do Steps 14-18
Step 14: vz0=vm; zm=(vz0(n) + vz1(n))/2
Step 15: Fl0=Fl(xn = zm); Jl0 = Jl(xn = zm)
Step 16: [midpoint, found]=Newton(n-1,Fl0, Jl0, v0, acc1)

9
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Step 17: If not(found): End
Step 18: vm=[midpoint zm]; ga=gm; gm=Fu(vm)

Step 19: Else: found=False; Exit Loop of Step 6
Step 20: If |gm|≤acc2: solution=vm
Step 21: Output {solution, found}

Each step of the algorithm is explained below.

Step 1: Apart from the obvious Fl , Fu, Jl and n that are passed to the routine through

Fol lowCurve, the important input here is the vectors vz0 and vz1 that are the two curve

points between which a possible intersection point with the surface Fu = 0 exists, since

Fu(vz0) and Fu(vz1) are eterosign (see steps 13-14 of Algorithm 3.1). As we have mentioned

before, acc1 is the accuracy of curve-following, while acc2 is the accuracy of solution finding.

Step 2: We locate the middle point zm that concerns the last dimension (xn) of the two

vectors vz0 and vz1 and substitute this point to the functions Fl and Jl .

Step 3: By calling the Newton routine to solve this system for the middle "slice" zm and

for the starting point v0 = vz0(1 : n−1), we find the curve-point that belongs to this middle

xn-slice.

Step 4: If Newton fails, given the fact that it has already managed to locate correctly

the point v1 = vz1(1 : n − 1) at Step 10 of Fol lowCurve, this indicates that the curve

possesses a singularity instead of an intersection point, between the xn-slices z0 = vz0(n)
and z1 = vz1(n). As a result, the algorithm stops returning f alse.

Steps 5-20: The xn-middle point of the curve has been found and we calculate the value

gm of Fu at this point. If gm is absolutely small enough to meet the user-specified acc2 de-

mand, then the solution is considered found and it is returned by the algorithm. Otherwise,

the procedure must be repeated for the left (steps 7-12) or right (steps 13-18) subinterval

of [z0, z1], depending on where the change of sign happens. The iterative procedure stops,

either if, by the successive halving of the xn-interval width, we finally locate the intersection

point, or if Newton method stops converging, or if we reach a point whose Fu absolute value

increases instead of decreasing. In the two last cases, the algorithm returns f alse.

4 Examples

The exact way Algorithms 2.1-3.3 work, can be better illustrated through the following

examples. Let us first consider the 3 × 3 system, resulting from the n = 3 version of the

Trigonometric function problem of Spedicato (1975), also presented as Problem no. 26 by

10
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Moré et al. (1981):

fi(x1, x2, x3) = 3−
3
∑

j=1

cos x j + i(1− cos xi)− sin xi = 0, i = 1, .., 3. (2)

Let us assume that we want to locate all the real solutions of (2) within the three-dimensional

box [−10,10]3. As seen in Figure 1, each of the three equations represents a surface that

consists of ellipsoids in a mesh arrangement. In the denoted box, there are 27 ellipsoids in

each surface, which, when combined altogether, form intersecting clusters of three, as seen

in a detail for the smaller [−2,2]3 box in Figure 2. Each triple of intersecting ellipsoids leads

to the existence of two intersection points. As a result, the system (2) possesses 2 solutions

in the box [−2,2]3 and 54 solutions in the box [−10, 10]3.

Figure 1: The surfaces that correspond to each one of the equations (2) in the box
[−10, 10]3.

Figure 2: All three surfaces of (2) ( f1:red, f2:green, f3:blue) in the sub-box [−2,2]3.

Let us execute Algorithm 2.1 with arguments F = ( f1, f2, f3) of (2), J the Jacobian matrix

of F , n = 3, lower = (−10,−10,−10), upper = (10, 10,10), stepx=1, stepz=1, acc1 =

11
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10−10, acc2 = 10−4, step = 0.1 and thresh = 0.1. With stepx = 1, the mesh points that

are created as starting values of Newton method in the 2-dimensional sub-box [−10,10]2 of

[−10, 10]3, have coordinates that combine the 21 points {-10, -9,.., 9, 10} in the x1 direction

with the same points in the x2 direction. Thus, a mesh of 441 initial points is created.

As concerns the "running" variable x3, since we have also chosen stepz = 1, 21 x3-slices

are formed with z0 ∈ {−10,−9, .., 9, 10}. For each slice, Algorithm 2.1 attempts to find curve

points of the subsystem of the first two equations of (2). E.g. for the first slice x3 = z0 = −10,

as can also be verified by Figure 1, no real solutions exist for the 2× 2 subsystem of (2)

f1(x1, x2) = 4− 2cos x1 − cos x2 − sin x1 − cos z0 = 0

f2(x1, x2) = 5− cos x1 − 3cos x2 − sin x2 − cos z0 = 0
(3)

and therefore, no curve points are found. As proceeding the iterations of the loop of Step 6

of Algorithm 2.1, the first "slice" for which curve points are located is slice z0 = −6. For

this z0 value, when using the 441 mesh starting points that we have mentioned before,

the application of Newton method to system (3) results to the location of 18 different real

solutions of (3) in the 2-box [−10, 10]2. This is correct since, the "slice" z0 = −6 meets

only 9 triples of the intersecting ellipsoids of (2) (see Figure 1) and each triple contains one

closed elliptical curve as intersection of the surfaces f1 and f2 (the red and green surfaces

in Figure 2 respectively). Therefore a x3-slice will meet each elliptical curve at maximum

two points.

Before proceeding to the next z0-slice, the routine Fol lowCurve is called twice, once for

increasing x3 with step = 0.1 (Step 17 of Algorithm 2.1), and once for decreasing x3 with

step = −0.1 (Step 18 of the same algorithm), and this is done for each one of the 18 located

curve points. As a curve is followed upwards or downwards, investigation of intersection

points with the surface f3(x1, x2, x3) = 0 is simultaneously run (Algorithm 3.1). In our

example, for z0 = −6, 9 of the 18 curve points produce curve-parts that have 2 intersection

points with the surface of the third equation, while the other 9 curve points produce curve

parts that have no intersection points with f3 = 0. As a result, we obtain 18 solutions when

starting from the 18 curve points that correspond to the z0 = −6 slice.

As the z0-slices proceed after z0 = −6, we discover that there exist only two other slices,

z0 = 0 and z0 = 6, for which the 441 mesh starting points obtained by Step 4 of Algorithm

2.1, make Newton produce solutions of (3). Again, as expected from Figure 1, 18 curve

points are added by Algorithm 2.1 to the list CurveStar t ingPoints for each of the two z0-

slices. Subsequently, during the Fol lowCurve process, these two sets of 18 curve starting

points each, lead to curve parts that have 18 intersection points with f3 = 0 for the set with

z0 = 0 and 18 more intersection points for the set with z0 = 6. As a result, our method

12
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outputs correctly all the 54 solutions of (2) that exist in the 3-box [−10,10]3.

It is worth noting here, that some solutions are found while following a curve branch with

ascending x3 during the Fol lowCurve procedure, while others are located while following

a curve branch with descending x3. From the 54 curve starting points that are produced in

total for the three z0-slices z0 = −6, z0 = 0 and z0 = 6, half of these points belong to curve

parts that have no intersection points with f3 = 0, and the other half belong to curve parts

that have 2 intersection points each with f3 = 0, as we have also mentioned before.

In the above example, the geometry of the curves (2) is such, that each new starting

point found by Algorithm 2.1 belongs to a different curve branch. As a result, the necessity

of storing the visited curve points in the list ListO f Curve Par ts in Algorithm 2.1 and the

additional check with the routine Belongs, so as to avoid the need of refollowing a branch,

is not made evident through problem (2). For this purpose, as well as for highlighting some

other issues, let us also examin, in the 2-box [−2,2]2, the following 2D example:

f1(x1, x2) = sin(x2
1 + 2x2

2) = 0

f2(x1, x2) = tan(x2
1 − 2x2

2) = 0
(4)

Using as input for Algorithm 2.1 the parameters stepx=0.5, stepz=0.5, step = 0.1 and

thresh= 0.1, we consider as "running" variable the variable x2 and follow the curves of the

first equation (black curves in Figure 3a) in order to meet the curves of the second equation

(red curves in Figure 3a). For this stepx value we acquire the 1D mesh of 9 starting points

{-2, -1.5, ..., 1.5, 2} in the x1 direction. Since for the "running" variable x2 we have also

chosen stepz = 0.5, 9 x2-slices are formed with z0 ∈ {−2,−1.5, ..., 1.5, 2}.
For each z0-slice and using the 9 mesh points as starting points for the one-dimensional

Newton method to solve for x1 the single nonlinear equation f1(x1, z0) = 0, two differ-

ent solutions are found by Newton - apart from the z0 = 0 slice for which three solutions

are found. These solutions (in total 19) are the CurveStar t ingPoints used by algorithm

Fol lowCurve and are marked with blue stars in Figure 3a. Using each one of these curve

starting points and following its curve with ascending and then with descending x2, as

shown in Figure 3b, all black curve parts are covered and consequently all 27 solutions of

system (4) in the 2-box [−2,2]2 are found (together with the isolated solution (0,0)). For

the needs of performing an accurate following process, the step-size is often automatically

halved (see Step 7 of Algorithm 3.1). As a result, a clustering of stars (i.e. visited points)

appears in Fig. 3b, at the zero-derivative parts of the black curve (around x1 = 0).

As seen from Fig. 3a, many of the 19 curve starting points belong to the same curve

parts. For instance, as regards the inner ellipse, from the 10 starting points that belong to

it, two of them (one with negative and one with positive x1) suffice as starting points to

13
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Figure 3: a. The curves of the equations (4) ( f1:black, f2:red) and the starting points of each
curve branch found by Algorithm 2.1 (blue stars). b. After the execution of Algorithm 3.1, all
visited curve points of f1 = 0 are marked with stars. The isolated point (0,0) is also visited.
Notice also the clustering of points around the four difficult-to-follow zero-derivative curve
parts at x1 = 0 that demand step-size halving.

cover the whole ellipse, when we follow it with running x2 ascending and then descending.

Therefore, in order to avoid redundant curve-following, an obvious strategy is to store the

points of the already visited curve parts and test if a new starting point belongs to these

parts (routine Belongs of Algorithm 2.1) before implementing the curve-following. This is

the case for the starting points with z0 from −0.5 up to z0 = 1, since all of them - apart from

the point (0, 0) - belong to the inner ellipse of Fig. 3a that is already followed, commencing

from the two curve-starting points with z0 = −1. Each of the rest of the points leads to

a number of solutions when ascending x2 and/or when descending x2, and three of them

(the points (1.3354, -1.5), (1.0685, -1) and (1.3354, 1.5)) lead to a solution that is already

approached from their symmetric point with negative x1. Finally, the starting point (0, 0) is

itself an isolated solution and comprises a visited curve-part on its own.

5 Changing the equation and variable ordering

Since the main idea of our curve-following methodology is based on excluding an equation

from the system (1) and on choosing a particular dimension as the one that will be "sliced",

this leads automatically to the conclusion that the choice of the left-out equation as well as

the choice of the "running" variable plays an important role on the algorithm’s performance.

In an attempt to optimize performance, firstly in term of the ability to locate all the solutions

14
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in a n-box when following a specific curve, and secondly to achieve this with the largest step-

size possible - i.e. using the minimum possible number of "slices", we first implemented

two more routines. The routine SwapRows automatically changes the order of equations by

swapping any row between row 1 and row n−1 (selected by the user) with the last row, since

it is always the last row that is left out by the algorithm. Of course, the Jacobian J is also

altered accordingly. The routine SwapColumns automatically changes the order of variables

in the input functions F and J , on user demand, again by swapping any variable between

x1 and xn−1 with the variable xn, since xn is always considered as the "running" variable.

These routines are not presented here since they are elementary, but can be provided by the

author upon request.

After adding the routines SwapRows and SwapColumns, we tried to execute our algo-

rithm for each one of our test-problems, with various choices of the left-out equation and

running variable, attempting to spot any relationship between the optimal selection of equa-

tion or variable and the properties of the Jacobian of F . The Jacobian can be of use, since

it is a quantity that provides information on the type of dependence of each function fi in

(1) with respect to each variable. For instance, in a 2× 2 system, if the bivariate function

f1(x1, x2) is nonlinearly dependent on variable x1 and linearly dependent on variable x2, it

will be much easier to use x1 as the running variable instead of (the default) x2, since, sub-

stituting any z0 value of a x1-slice to f1 will lead to a simple linear equation: f1(z0, x2) = 0,

to be numerically solved and followed in �2. On the other hand, we cannot follow a curve

for the slices of a specific variable xi, if the subsystem of n−1 equations that we have chosen

is independent of xi - that is, if the first n− 1 elements of the i-th column of the Jacobian

are zero.

Considering all the above, we have produced the additional algorithm: Reorder, whose

call can be inserted before the execution of Step 3 of Algorithm 2.1, and provides a sugges-

tion for equation or variable reordering, that the user may follow. The routines SwapRows
and SwapColumns can be used after the execution of Reorder, so that the final execution

ordering lies on user decision.

Algorithm 5.1: Reorder

Step 1: Input {J}
Step 2: n=length(J); D=zeros(n,n); rows=1:n; columns=1:n
Step 3: solvable=True; swappedrows=False; swappedcols=False
Step 4: Repeat Steps 5 - 7 for i=1,..,n

Step 5: Repeat Steps 6 - 7 for j=1,..,n
Step 6: If Exists(x(j),J(i,j)): D(i,j)=2
Step 7: Else If J(i,j)�= 0: D(i,j)=1
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Step 8: Repeat Steps 9 - 11 for i=1,..,n-1
Step 9: If sum(D(i,1:n-1))==0: Do Steps 10 - 11

Step 10: If sum(D(n,1:n-1))==0 or swappedrows: solvable=False; End
Step 11: Else: rows(n)=i; rows(i)=n; D=D(rows); swappedrows=True

Step 12: If swappedrows: End
Step 13: For j=1,..,n CountOnes(j)=FindNumberOfOnes(D(1:n-1,j))
Step 14: MinOnes=min(CountOnes(j))
Step 15: Repeat Step 16 for j=1,..,n-1

Step 16: If CountOnes(j)==MinOnes: columns(j)=n; columns(n)=j; Exit
Step 17: Output {rows, columns, solvable}

The basic idea behind steps 2-7 of Algorithm 5.1 is, to derive a matrix D from J , whose

(i, j)-element is:

2 if the function fi is nonlinearly dependent on variable x j

1 if fi is linearly dependent on x j, and

0 if fi is independent of x j.

In steps 8-11, we eliminate the rank-reduction case of Jl , which may happen if a row of D
has all zeros but for the last element. This case can be solved by swapping the corresponding

equation with the last equation of F - and correspondingly swap this row with the last one in

D (Step 11). If another such row exists in D, then rank(J)< n and therefore the system (1)

cannot be uniquely solved and the flag variable sol vable is returned with the value False
(Step 10).

In fact, the occasion of zero elements everywhere but in the last element of a row in D, is

the only occasion that Algorithm 5.1 suggests row-reordering. The reason behind this, is that

all the linearity-in-a-variable cases can be treated by column swapping. After performing

a great number of tests, we realised that row swapping byitself without column swapping

did not improve significantly the method’s performance. Nevertheless, we do provide row

swapping as an additional option for the user to attempt.

In steps 13-16, we choose the first-encountered column ( j) with the minimum number

of ones in the rows 1..n− 1 and swap it with the last column of D. This corresponds to re-

ordering the variables in (1) by swapping variables x j and xn. We remind that the presence

of 1 in an element of D implies linear dependence of the current function on the current

variable. As noted earlier in this section, it is desirable such a variable to be included in

the subsystem-to-follow, since it reduces the complexity of the problem. However, vari-

able swapping can be done only once and only if row swapping has not happened before

(Step 12). This is due to the fact that, after row swapping, a subsequent variable swapping

may restore the zero-element case that row swapping has already cured.
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The output rows and cols ordering of Algorithm 5.1 can be given as input to the routines

SwapRows and SwapColumns respectively, in order to actually implement the algorithm’s

suggestion. In the next section we present results from applying our method to a variety of

test-problems and illustrate various cases where the method’s performance is improved by

use of the ordering suggestions of Algorithm 5.1.

6 Application to various test-problems with dimension up

to n= 10

In order to test our algorithm, we have applied it to more than 130 test-problems, in their

majority taken from Moré et al. (1981), Kearfott (1987) and Kuiken (1968). From those

problems that are generalised for any dimension, we tested n up to the value of 10. For all

tested problems up to n= 10, the algorithm managed to locate all the real solutions within a

given n-box, with a wanted accuracy of 10−4 and with reasonable execution times (at most,

of the order of seconds). As mentioned in Sect. 3, this accuracy is adequate for providing

initial approximations of the solutions, which can subsequently be used as starting values

by any high-precision and single-solution finding algorithm.

Table 1: Application of our algorithm to the most representative test-problems up to n= 10.

# n reference n-box #sols secs alg. sugg.
T1 10 Broyden (1965) tridiagonal fun. [−3, 3]10 2 1.6 no reord.
T2 9 Brown (1969) almost-linear fun. [−20, 20]9 3 0.2 no reord.
T3 8 R.K.P. (Tsai & Morgan, 1985) [−1, 1]8 16 4.5 swap x5, x8
T4 7 D.I.E.F. (Moré & Cosnard, 1979) [−5, 5]7 1 0.1 no reord.
T5 6 Biggs (1971) EXP6 function [−12, 12]6 6 7.5 swap x1, x6
T6 5 Chebyquad fun. (Fletcher, 1965) [0,1]5 120 165 no reord.
T7 4 Syst. of quadratics (Kearfott, 1987) [−1, 1]4 2 0.1 swap x1, x4
T8 3 Box (1986) three-dimens. fun. [0,11]2 × [−2, 2] 84550 261 swap x1, x3
T9 2 Linear fun. (Moré et al., 1981) [−5, 5]2 1 0.04 swap rows

T10 2 Kuiken’s (1968) prob. 1 [−1.6, 1.6]× [−1.04,1.04] 12 0.9 no reord.
T11 2 Kuiken’s (1968) prob. 2 [−3.1, 3.8]× [0.11, 3.1] 20 1.8 no reord.

In Table 1 we have chosen to present the application of our method to 11 test-problems,

for values of n from 10 down to 2, and trying to select, from our list of problems, either the

most representative or the most troublesome. These problems we have renumerated, for

the needs of later referring to them for extra commenting within the text. In all cases but for

problem T8, the number of solutions presented in column #sols of Table 1, is the number

of the problem’s real solutions within the given n-box. This number coincides with the

number of solutions found by our algorithm. Since the solutions of problem T8 are infinite,
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for this problem we indicatively present a number of solutions found by one execution of our

method with specific input values (referred to in the text below). In column secs we present

the corresponding CPU-time needed for this execution. All experiments were performed on

an Intel Core i5-3470, 3.60 GHz CPU, 8GB RAM, Windows 10 Pro x64 computer and all the

codes were implemented in Matlab R2016a.

In what follows, we analyze each test-problem of Table 1.

T1: A classical unconstrained optimization test-problem with variable n is Broyden tridi-

agonal function (Broyden, 1965) (see also test function 30 of Moré et al. (1981)). Here we

present its function F for n= 10.

fi = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 1, .., 10, x0 = x11 = 0 (5)

This problem has two real solutions in [−3,3]10. The corresponding matrix D of Algorithm

5.1 is tridiagonal, with 2 everywhere at the main diagonal and 1 everywhere at the lower

and upper diagonals. Since it is the last column of D that has the minimum number of

ones, there is no need to do any variable swapping. The method is so well-behaved for this

problem that it finds the two solutions even for step-sizes as large as stepz = stepx = 6

(this is because it locates the solutions even from the first z0 = −3 slice). For stepx = 6,

29 = 512 mesh starting points are used and the CPU-time needed for the execution is 1.6′′.

T2: Another classical unconstrained optimization test-problem with variable n, is Brown

almost-linear function (Brown, 1969) (see also test function 27 of Moré et al. (1981)). Here

we present its function F for n= 9.

fi = xi +
9
∑

j=1

x j − 10, i = 1, .., 8, f9 =
9
∏

j=1

x j − 1 (6)

All the solutions of this problem for any n, are of the form (α, ...,α,α1−n) where α is any

solution of the polynomial equation nan− (n+1)an−1+1= 0. For the particular case n= 9,

the equation 9a9 − 10a8 + 1 = 0 has three real solutions: α = 1, α = 0.974543355846

and α = −0.7052133225. These give rise to three corresponding real solutions of (6) and

we can find them all if we search within the 9-box [−20,20]9. The corresponding matrix

D of Algorithm 5.1 has all ones and therefore there is no need to do any row or variable

swapping. Our method is very well-behaved also for this test-problem and can find the

three solutions when using step-sizes as large as stepz = stepx = 40, since it locates all the

solutions even from the first z0 = −20 slice. For stepx = 40, 28 = 256 mesh starting points

are used and the CPU-time needed for the execution is 0.2′′.

T3: This is a specific n = 8 problem, mentioned as "Problem 11: A robot kinematics
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problem" (and referred to as R.K.P. in Table 1) by Kearfott (1987) and first used by Tsai &

Morgan (1985). Its function F is

f1 = α1 x1 x3 +α2 x2 x3 +α3 x1 +α4 x2 +α5 x4 +α6 x7 +α7

f2 = α8 x1 x3 +α9 x2 x3 +α10 x1 +α11 x2 +α12 x4 +α13

f3 = α14 x6 x8 +α15 x1 +α16 x2, f4 = α17 x1 +α18 x2 +α19

f5 = x2
1 + x2

2 − 1, f6 = x2
3 + x2

4 − 1, f7 = x2
5 + x2

6 − 1, f8 = x2
7 + x2

8 − 1

(7)

where the values of the constants α1, ..,α19 are given in Kearfott (1987). The problem is

known to have 16 real solutions in the 8-box [−1,1]8. The corresponding matrix D of

Algorithm 5.1 is

D =





























1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

1 1 0 0 0 1 0 1

1 1 0 0 0 0 0 0

2 2 0 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 0 2 2 0 0

0 0 0 0 0 0 2 2





























and the routine Reorder suggests swapping of columns 5 and 8, i.e. of the variables x5 and

x8 of the system, because column 5 has fewer ones than column 8. However, testing the

system with or without the swapping of variables ends to the same performance. Actually,

even without variable swapping, the method allows the use of very large step-sizes such as

stepz = stepx = 2. For stepx = 2, 27 = 128 mesh starting points are used and the method

outputs all the 16 real solutions in a CPU-time of 4.5 seconds. Half of the solutions are

found for the z0 = −1 slice, and the other half are found for the z0 = 1 slice.

T4: One more classical unconstrained optimization test-problem with variable n (pre-

sented by Moré et al. (1981) as test function 29) is the "Discrete integral equation function"

(referred to as D.I.E.F. in Table 1), first used as a test-problem by Moré and Cosnard (1979).

Here we present its function F for n= 7.

fi = xi+
1

16

�

(1− ti)
i
∑

j=1

t j(x j+ t j+1)3+ ti

7
∑

j=i+1

(1− t j)(x j+ t j+1)3
�

, ti = i/8, i = 1, .., 7. (8)

In the 7-box [−5, 5]7 this problem has only one real solution. Each element of the corre-

sponding matrix D of Algorithm 5.1 is 2, and so there is no need to do any row or variable

swapping. Our method is very well-behaved also for this problem and the use of step-sizes
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can be as large as stepz = stepx = 10, since it can locate the solution even from the first

z0 = −5 slice. For stepx = 10, 26 = 64 mesh starting points are used and the CPU-time

needed for the execution is 0.1′′.

T5: Another problem presented by Moré et al. (1981) (as test function 18) is Biggs EXP6

function (Biggs, 1971) for n= 6. The function is

fi = x3e−ti x1 − x4e−ti x2 + x6e−ti x5 − yi,

ti = 0.1i, yi = e−ti − 5e−10ti + 3e−4ti , i = 1, .., 6.
(9)

In the 6-box [−12,12]6 this problem has 6 real solutions. Columns 1, 2 and 5 of the cor-

responding matrix D of Algorithm 5.1 have all two’s, while columns 3, 4 and 6 of D have

all ones. As a result, the routine Reorder suggests swapping of columns 1 and 6. When

testing our method without column swapping, it locates all 6 solutions with stepz as large

as 1.5 and stepx as large as 6. The CPU time needed for the algorithm’s execution with the

above mentioned step-sizes is 25′′. Alternatively, if we perform the suggested swapping of

columns 1 and 6 (that is, of variables x1 and x6), the method can locate all 6 solutions with

stepz as large as 3 and stepx as large as 12, thus reducing the needed CPU-time to 7.5′′. As

a result, test-problem T5 can be considered as an example of improvement of algorithm’s

performance through variable swapping.

T6: One more classical unconstrained optimization test-problem with variable n pre-

sented by Moré et al. (1981) (as test function 35) is the Chebyquad function, first used as a

test-problem by Fletcher (1965). The function F is based on the shifted to [0, 1] Chebyshev

polynomials Ti(x). Here we present and use it for n= 5.

fi =
1
5

5
∑

j=1

Ti(x j), i = 1,3, 5, fi =
1
5

5
∑

j=1

Ti(x j) +
1

i2 − 1
, i = 2,4 (10)

The above problem has 5! = 120 solutions in the 5-box [0, 1]5. The coordinates of these

solutions in �5 are derived from all the different arrangements of the numbers 0.0838,

0.3127, 0.5000, 0.6873, 0.9162. The corresponding matrix D of Algorithm 5.1 has ones in

the first row and twos in all the other rows, therefore the algorithm does not suggest any row

or variable swapping. The maximum distance between two z0-slices within the x5-interval

[0,1], so that all 24 curve-branches are located, is stepz = 0.005. This necessarily small

stepz results to larger CPU-times compared to the other test-problems we have studied. E.g.

for the combination of stepz = 0.005 and stepx = 0.25 (which creates a mesh of 54 = 625

starting points) the method needs 165′′ to locate all the 120 solutions.

T7: Another variable-dimension problem is the system of quadratics presented by Kear-
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fott (1987) (as test function 16) for n= 4. The system’s function is

fi = (xi − 0.1)2 + xi+1 − 0.1, i = 1, .., 3, f4 = (x4 − 0.1)2 + x1 − 0.1. (11)

In the 4-box [−1,1]4 this problem has 2 real solutions. The corresponding matrix D of

Algorithm 5.1 is

D =











2 1 0 0

0 2 1 0

0 0 2 1

1 0 0 2











and the routine Reorder suggests swapping of columns 1 and 4, i.e. of the variables x1 and

x4 of the system, because column 1 has fewer ones than column 4 (if we discard the last

row). Without column swapping, the method can approximate the solution with xi = 0.1

with accuracy only up to 10−2, despite using small step-sizes. On the contrary, if we perform

the suggested swapping of variables x1 and x4, the method can calculate both solutions with

accuracy as good as 10−14 and with step-sizes as large as stepz = stepx = 2. For these step-

sizes a mesh of 23 = 8 starting points is used and the needed CPU-time is 0.1′′. Therefore,

test-problem T7 is a profound example of improvement of algorithm’s performance through

variable swapping.

T8: A problem that requires special treatment is Box three-dimensional function (Box,

1966), also presented by Moré et al. (1981) as test function 12. The system’s function is

fi = e−ti x1 − e−ti x2 − x3(e
−ti − e−10ti), ti = 0.1i, i = 1, 2,3. (12)

This problem has the infinitely many real solutions (1,10,1),(10,1,-1),(α,α, 0), α ∈ �. We

will investigate the performance of our method when searching for solutions in the 3-box

[0, 11]2 × [−2, 2].
The corresponding matrix D of Algorithm 5.1 has all twos in the first two columns and all

ones in the third column. Consequently, the routine Reorder suggests swapping of columns

1 and 3, i.e. of the variables x1 and x3 of the system, because column 1 has fewer ones than

column 3. Furthermore, the nature of the problem’s solutions is such, that the density of

the solutions we can obtain, is affected by the density of the xn-slices, only if we consider

as "running", the variable x1 or the variable x2. As a result, when testing the algorithm

without column swapping (that is, with x3 as the running variable) and experimenting

with the parameters stepz, stepx , step and thresh in order to locate as many solutions as

possible (with acc2 = 10−10), we end up with at most 92 solutions. These are, the points

(1,10, 1) and (10, 1,−1) plus 90 points of the form (α,α, 0). This is achieved in a CPU-time
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of 28′′ for the parameter values stepz = 1, stepx = step = threshx = 0.1. Decreasing any

of these values further does not result in finding more solutions.

On the other hand, when we implement the suggested by Reorder routine column swap-

ping, variable x1 becomes the running variable. Then, the density of the located solutions

is directly influenced by the magnitude of the x1-slice and the x1-step that is used in the

Fol lowCurve routine. After extensive testing it became obvious that, even if we sustain

a big value of stepz, with adequately decreasing the values of the step and thresh curve-

following parameters, we can regulate the density of the achieved solutions in the level we

desire. For instance, starting with stepz = stepx = 1 and step = thresh = 0.1 (and for

acc1 = acc2 = 10−10), we can locate the solution points (1,10, 1) and (10,1,−1) plus 107

points of the form (α,α, 0) (with a density of order O(10−1)) in only 0.9′′. When decreasing

step and thresh to 0.001, we achieve the location of in total 8456 solutions with density of

O(10−3) in 14′′. Reducing the two last parameters even further to step = thresh= 10−4, the

corresponding number of obtained solutions is increased to 84550. The CPU-time needed is

now 261′′ and the solutions’ density reaches the order O(10−4). Therefore we can conclude

that, for the test-problem T8, the need of column-swapping is unquestionable.

T9: Another problem which, although trivial, requires special treatment is the Linear

function of Moré et al. (1981), whose equations for n= 2 are

f1 = −x2 − 1, f2 = −x1 − 1. (13)

The corresponding matrix D of Algorithm 5.1 is

D =

�

0 1

1 0

�

and the routine Reorder suggests swapping of rows 1 and 2, since otherwise the one-

dimensional subsystem has zero-rank. As a result, if we attempt to execute the algorithm

without row swapping and search for solutions e.g. in the 2-box [−5,5]2, no solution is

found. On the contrary, when we implement the suggested row swapping, the solution

(−1,−1) is found immediately from the first x2-slice and in less than 0.1′′.

In what follows we will also study two more test-problems with n = 2, the problems

presented by Kuiken (1968), so as to make a direct comparison with his 2D curve-following

method.

T10: This is the first problem of Kuiken (1968), with equations:

f1 =
�

x2 −
1

3x1

��

x2 + tan−1(x1)
�

, f2 =
�

x2
2 −

1
(1+ x2

1)2
�

sin
� 1

0.07+ x2
1 + x2

2

�

. (14)
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This problem has 12 real solutions in the 2-box [−1.6,1.6]×[−1.04,1.04]. The correspond-

ing matrix D of Algorithm 5.1 has all twos and therefore the algorithm does not suggest any

row or variable swapping. Our method can locate all 12 solutions when using at most

stepz = stepx = 0.7 and the CPU time needed for this execution is only 0.9′′. On the

contrary, for the same problem, Kuiken’s method needs a much smaller step-size (0.02) for

accurate curve-following, when using a second order Runge-Kutta scheme. This fact, to-

gether with the cost of coordinate system’s rotations at each step of the curve-following,

increases the CPU-time needed for Kuiken’s method to obtain the same results to as much

as 109′′.

T11: This is the second problem of Kuiken (1968), with equations:

f1 = sin(1+ x2
1 + x2

2)− cos(1+ x2
1 + x2

2)tan−1(1+ x2
1 + 2x2

2)exp
� x2

1 + x2
2

1+ x2
1 + x2

2

�

f2 = x2
1 exp
� x2

1 − x2
2

1+ x2
1 + x2

2

�

−

√

√

√

�

�

�

�

3x2
1 − 2exp
� x1 − x2

1+ |x1|+ |x2|

�

�

�

�

�

.

(15)

This problem has 20 real solutions in the 2-box [−3.1,3.8]×[0.11,3.1]. The corresponding

matrix D of Algorithm 5.1 has all twos and therefore the algorithm does not suggest any

row or variable swapping. Our method can locate all 20 solutions when using at most

stepz = 1.4, stepx = 0.6, step = thresh= 0.02 and the CPU time needed for this execution

is only 1.8′′. Again, for the same problem, Kuiken’s method needs a step-size as small as

0.02 and the execution time reaches 427′′.

7 Conclusions and suggestions for further work

In the present work we have presented a method for locating all real solutions of a system

of nonlinear equations within a given n-box, by means of curve-following in �n. For the

purposes of curve-following, Newton method has been used for numerically calculating a

solution of the (n−1)-dimensional subsystem of the equations-to-follow, after starting from

a previously found curve-point. The convergence of Newton’s method is ensured by auto-

matically adjusting the step-size. Newton’s method was selected due to its quadratic conver-

gence. However, any other solution-finding algorithm could be used in place of Newton and

it would be interesting to investigate how this would affect the method’s performance. In

fact, even the present algorithm could be used recursively, for solving the (n−1)-dimensional

subsystem. However, this would unnecessarily increase the computational cost, since what

is needed at each curve-following step is the location of one solution in the proximity of the
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starting point, and not the location of all real solutions.

During the process of curve-following, the intersection point with the remaining hyper-

surface is found using bisection method. Again, here, any other more efficient solution-

finding algorithm can be used instead, and we expect that this would affect the method’s

performance in a lesser or higher degree, depending on the number and density of the so-

lutions to be found.

Various more sophisticated step-altering techniques might also be used to improve per-

formance. In fact we have already tried to increase the step-size if abs(u1) > abs(u0) at

Step 13 of Algorithm 3.1 (which means that we are moving away from a solution). However,

this technique proved not to improve performance in the long term, since it deteriorated the

accuracy of curve-following. In order to keep the accuracy within the user-specified limit

acc1, the step-size had to be halved again, thus leading to larger computational effort.

Finally, a more complex row and column-ordering selection algorithm could also be

developed, which a) could exploit the specific curve properties of each equation b) aim to

enable the selection of the largest possible stepx parameter. The reason for this, is that,

the part of the algorithm with the highest complexity is the use of the (n− 1)-dimensional

starting points’ mesh. As n increases, it might be crucial for the method’s performance, to

select the row or variable-ordering that allows the use of the lowest-possible mesh density.

This matter is still under investigation.
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